organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shamaladevi Nagaraja Rao,^a Saradha Vasanth^b* and Vasantha Pattabhi^a

^aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India, and ^bDepartment of Chemistry, Central Research Institute for Siddha, Arumbakkam, Chennai 600106, India

Correspondence e-mail: pvasantha@hotmail.com

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.061 wR factor = 0.152 Data-to-parameter ratio = 12.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Lup-1,20(29)-dien-3-one, a triterpenoid from *Agyneia bacciformis* A. Juss

The crystal structure of glochidone [or lup-1,20(29)-dien-3one], $C_{30}H_{46}O$, from the plant *Agyneia bacciformis* A. Juss has been determined. This natural product has anti-inflammatory activity. The rings *A/B*, *B/C*, *C/D* and *D/E* are *trans* fused. The molecules in the crystal structure are stabilized by $C-H \cdots O$ short contacts and van der Waals forces. Received 26 April 2004 Accepted 20 May 2004 Online 29 May 2004

Comment

The title compound, (I), is an α,β -unsaturated ketone (Fig. 1). The bond distances and angles are comparable to those observed in a similar triterpene structure, that of alusenone (Ohki et al., 1981) and lup-20(29)-en-3-one (Dampawan et al., 1977). The C2-C3 and C19-C20 bonds assume partial double-bond character due to the adjacent double bond. The apparent shortening of the bond C30-C20 may be due to the high thermal vibration of atom C30. The lengthening of the bonds C8-C9 and C8-C14 in glochidone may be due to steric crowding at atoms C8 and C14, as observed in the structure of the triterpenoid lantadene A (Pattabhi & Sukumar, 1991). Methyl groups C23 and C27 are α -substituted and groups C24, C25, C26 and C28 are β -substituted (Fig. 2), which is in agreement with the chemical structure assignments. The rings A/B, B/C, C/D and D/E are trans fused. The molecular structure shows that the rings A and E are in distorted envelope conformations while rings B, C and D are in chair conformations (Cremer & Pople, 1975). A short H...O contact of 2.71 Å is observed between atoms H26B and $O31(\frac{3}{2}-x, 2-y, z-\frac{1}{2}).$

Experimental

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Glochidone was extracted from the plant *Agyneia bacciformis* A. Juss, as reported by Purushothaman & Saradha (1982). Single crystals

Figure 1

The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

of the compound were obtained from dimethyl fluoride solution at room temperature (293 K).

Crystal data

$C_{30}H_{46}O$ $M_r = 422.67$ Orthorhombic, $P2_12_12_1$ $a = 10.422 (4) \text{ Å}$ $b = 13.881 (5) \text{ Å}$ $c = 17.591 (6) \text{ Å}$ $V = 2544.8 (15) \text{ Å}^3$ $Z = 4$ $D_x = 1.103 \text{ Mg m}^{-3}$	Mo $K\alpha$ radiation Cell parameters from 6028 reflections $\theta = 1.9-28.0^{\circ}$ $\mu = 0.06 \text{ mm}^{-1}$ T = 293 (2) K Block, colourless 0.48 × 0.40 × 0.40 mm
Data collection	
Bruker SMART APEX CCD area- detector diffractometer ω scans Absorption correction: none 22282 measured reflections 3423 independent reflections	2726 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$ $\theta_{max} = 28.0^{\circ}$ $h = -13 \rightarrow 13$ $k = -18 \rightarrow 18$ $l = -23 \rightarrow 23$
Refinement Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.152$ S = 1.04 3423 reflections 286 parameters H-atom parameters constrained	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.079P)^{2} + 0.3676P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 0.24 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.18 \text{ e} \text{ Å}^{-3}$

Figure 2

Stereoview of glochidone, showing the α -substituted (C23 and C27) and β -substituted (C24, C25, C26 and C28) methyl groups.

Table 1 Selected bond distances (Å).

C1-C2	1.322 (5)	C8-C14	1.593 (3)
C1-C10	1.495 (4)	C19-C20	1.493 (5)
C2-C3	1.449 (5)	C20-C29	1.363 (6)
C8-C9	1.560 (3)	C20-C30	1.438 (6)

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C–H = 0.93–0.98 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for other H atoms. In the absence of significant anomalous scattering, Friedel pairs were merged, and the absolute configuration was assigned arbitrarily.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ZORTEP* (Zsolnai, 1997); software used to prepare material for publication: *SHELXL*97 and *PLATON* (Spek, 2003).

SN thanks the University of Madras, India, for providing financial assistance.

References

Bruker (2001). *SAINT* (Version 6.28a) and *SMART* (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dampawan, P., Huntrakul, C., Reutrakul, V., Raston, C. L. & White, A. H. (1977). J. Sci. Soc. 3, 14.

Ohki, M., Tachibana, K. & Kuroda, T. (1981). Acta Cryst. B37, 2092-2094.

Pattabhi, V. & Sukumar, N. (1991). Acta Cryst. C47, 810-812.

- Purushothaman, K. K. & Saradha, V. (1982). BMEBR, 3, 258-263.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.